3. Dreo J, Siarry P. A new ant colony algorithm using the hierarchical concept aimed at optimization of multi-minima continuous functions. Lecture Notes in Computer Science, LNCS 2463, Berlin, Germany: Springer-Verlag, 2002: 216-221
4. Li L X, Peng H P, Wang X D, et al. An optimization method inspired by chaotic ant behavior. International Journal of Bifurcation and Chaos, 2006, 16(8): 2351-2364
5. Li Y Y, Li L X, Wen Q Y, et al. Data fitting via chaotic ant swarm. Proceedings of 2nd International Conference on Natural Computation, Sep 24-27 2006, Xi’an, China. Berlin, Germany: Springer-Verlag, 2006: 180-183
6. Li Y Y, Li L X, Wen Q Y, et al. Integer programming via chaotic ant swarm. The 3rd International Conference on Natural Computation: Vol 4, Aug 24-27 2007, Haikou, China. Berlin, Germany: Springer-Verlag, 2007: 489-493
7. Li L X, Yang Y X, Peng H P, et al. Parameters identification of chaotic systems via chaotic ant swarm. Chaos, Solitons and Fractals. 2006, 28(5): 1204-1211
8. Liang J J, Qin A K. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295
9. Sole R V, Miramontes O, Goodwin B C. Oscillations and chaos in ant societies. Journal of Theoretical Biology, 1993, 161(3): 343-357
10. Tan Y, Deng C, He Z Y. A chaotic annealing neural network and its application to direction estimation of spatial signal sources. Proceedings of the 1997 IEEE Neural Networks for Signal Processing, Sep 24-26, 1997, Amelea, Island. Piscataway, NJ, USA: IEEE, 1997: 541-550
11. Ji M J, Tang H W. Application of chaos in simulated annealing. Chaos, Solitons and Fractals, 2004, 21(4): 933-941
12. Choi D. Cooperative mutation based evolutionary programming for continuous function optimization. Operations Research Letters, 2002, 30(3): 195-201 |